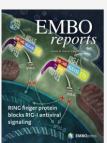
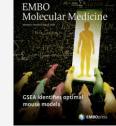
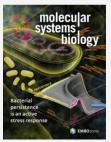
How can institutions help researchers?

Transparent Publishing, Preprints & Open Science: the EMBO Press paradigm


Bernd Pulverer Chief Editor | *The EMBO Journal* Head | Scientific Publications, EMBO




THE

EMBO

JOURNAL

EMBO Molecular Medicine

What can Journals do?

Research Integrity & Reproducibility

- Prepublication checks
- Optimized process
- Enhanced papers

EMBO Molecular Medicine molecular systems biology

What can Journals do?

Efficient Process

Single round revision Manuscript transfers

Reproducible Science

Open source data Open references (*i4OS*)

Open methods/protocols; e-labbooks

Self-correction & Versioning

Enhanced Quality Control

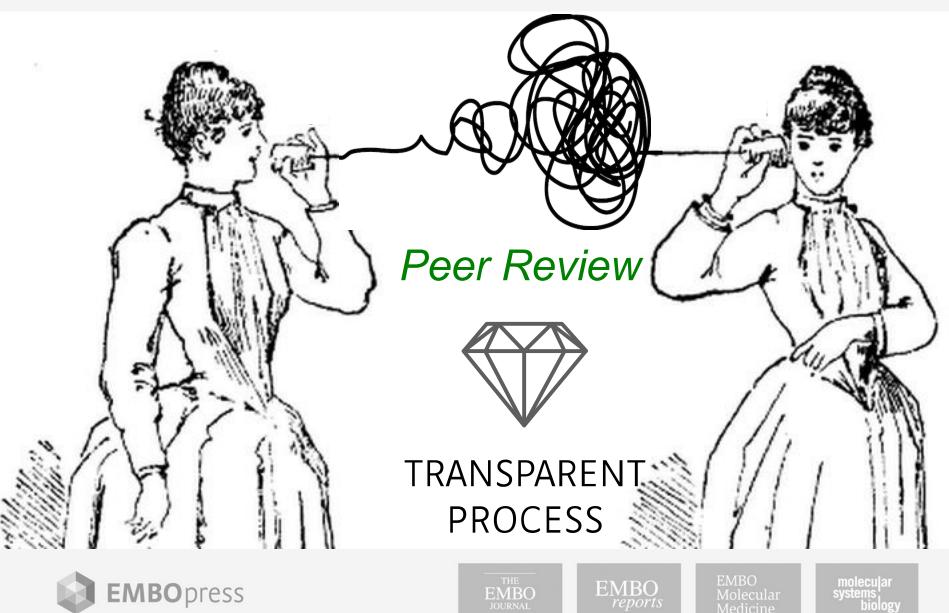
Prepublication Integrity checks Data Curation Technical Review

• Discoverability

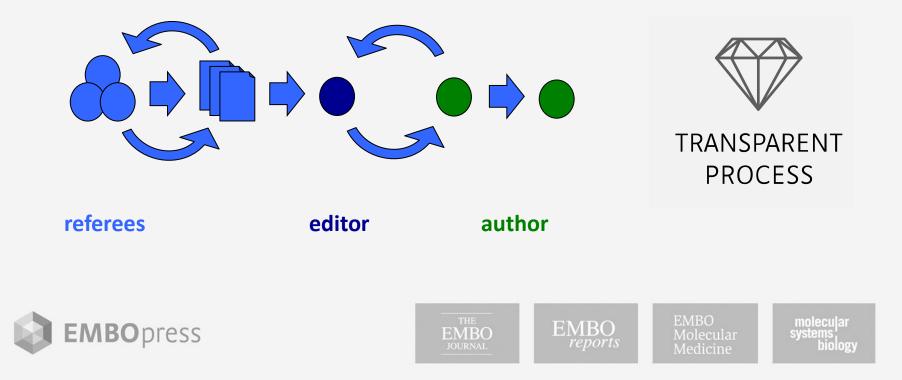
Forward-Linking to confirmatory / refuting data Data-directed Search (*SourceData*)

Community engagement

Reforming Research Assessment (*DORA*) Journal < > Institutional dialogue (CLUE) Training



EMBO Molecular Medicine molecular systems biology


Journals

• Transparent Process:

Open editorial process to authors and readers

- Referee Cross-Commenting & Author Preconsultation
- 'Scooping Protection'

Data Transparency

Published data should be accessible, reproducible and re-usable by others

SOURCE DATA

Metabolic profiling of the human response to a glucose challenge O Shaham et al insulin, we hypothesized that insulin sensitivity could be studies were focused on normal, healthy individuals spanning reflected not only by changes in glucose but also by the OGTT a narrow range of fasting insulin levels, we performed a third response of multiple other metabolites. Because our initial analysis on a group of individuals with impaired glucose tolerance from the Framingham Offspring Study, FOS-IGT, who spanned a broader range of fasting insulin concentrations (Table D Table II Regression models relating fasting insulin to 2-h metabolite change in individuals with impaired glucose tolerance (FOS-ICT) First, to systematically evaluate the relationship between individual metabolite excursions and fasting insulin, we Predictor(s) P-value Prediction performed linear regression of the fasting insulin concentra-R2A tion on each of the 18 2-h excursions. Out of the 18, 6 showed a statistically significant (P < 0.05) correlation with fasting 6.65 7.74 Δ^b Leucine/isoleucine Δ Valine 0.36 0.17 9E-4 3E-2 insulin, and included the excursions in lactate, β -hydroxybu 0.16 0.14 0.14 0.14 0.54 0.46 0.33 3E-2 4E-2 4E-2 4E-2 7E-5 1E-4 1E-3 A Lactate tyrate amino acids (leucine/isoleucine, valine, and methio 7.60 7.86 7.68 7.90 5.66 6.89 6.74 node oxycholic acid nine), and a bile acid (GCDCA) (Table II). Taken together with the glycerol excursion, which scored (P=0.07) slightly below Δ Leucine/isoleucine + Δ glycerol^e the significance threshold, the response of four distinct insulin action markers correlated with fasting insulin (Figure 5A) Individuals with high fasting insulin exhibited a blunted excursion in all seven metabolites: they had a smaller change ⁴The prediction error is expressed as the root mean square error of prediction (RASEP), in micro-international units per milliliter insulin. ^bA denotes log of the 2-h fold change of metabolite levels. ^c A bivariate model consisting of the 2-h changes in leucine/isoleucine and in both in increasing metabolites (lactate and GCDCA) and in decreasing metabolites (the other five). Notably, the glucose excursion was not correlated with fasting insulin (P=0.20) These findings suggest that resistance to the action of insulin Leu/lle 2-h decline (%)

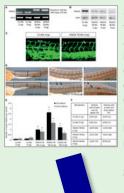
Figure 5. Correlation between lasting insulin and 2-h metabolite changes in individuals with impaired glucose beliences (FCB-101), (A) 2-h druges in markers of insulin actions as considered in this fing marking manufactuals, and the circle size proportionate to lasting insulin langes and inspection of of lasting and given 2-bit circle segmenta an individual, and the circle size proportionate to lasting insulin langes (A) segmentation in the probability of lasting a builted discline in Lucille presentation to protection segmentation. The protection of lasting and lasting a builted discline in Lucille presentation to protection segmentation. The protection of lasting and lasting a builted discline in Lucille presentation to protection segmentation. The protection of lasting and lasting and lasting and lasting and and lasting and and lasting and an analysis and lasting and lasting

6 Molecular Systems Biology 2008

'The two vital components of the scientific endeavor – the idea and the evidence – are too frequently separated' Science as an open enterprise, Royal Society, 2012

EMBO JOURNAL

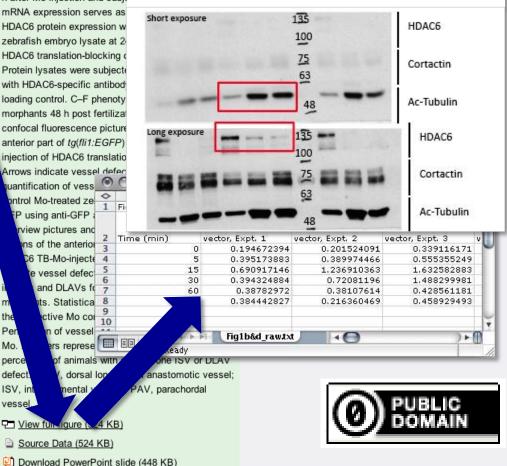
MBO reports EMBO Molecula Medicine


molecular systems biology

Source Data

- Archive
- Transparency
- Replicates
- Reanalysis
- Reuse
- Discourage manipulation
- Figure Level Authorship

Figure 2.

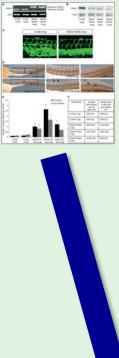


Silencing of HDAC6 impairs embryonic vessel formation in zebrafish. (A) Aberrant splicing of Danio rerio HDAC6 mRNA after HDAC6 splice-blocking Mo injection by PCR. Injection of the HDAC6 SB-Mo

generated at 24 h post fertiliz of 338 bp, whereas the HDA(disappeared (253 bp), showin Mo. Whole-zebrafish embryo h after Mo injection and subje mRNA expression serves as HDAC6 protein expression w zebrafish embryo lysate at 2 HDAC6 translation-blocking of Protein lysates were subjected with HDAC6-specific antibod loading control. C-F phenoty morphants 48 h post fertilizat confocal fluorescence picture anterior part of tg(fli1:EGFP) injection of HDAC6 translatio Arrows indicate vessel defect uantification of vess ontrol Mo-treated ze 1 Fi P using anti-GFP rview pictures and ons of the anterior C6 TB-Mo-iniecte e vessel defect and DLAVs fo 7 ts. Statistica 8 ctive Mo col 10 the Per n of vessel ers represe Mo. of animals with perce defect dorsal lor ISV, in

vessel

Minimally Processed Data Replicates


SOURCE DATA

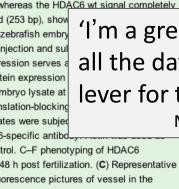
Source Data

- Archive
- Transparency
- Replicates
- Reanalysis
- Reuse
- **Discourage manipulation**
- **Figure Level Authorship**

Figure 2.

Silencing of HDAC6 impairs embryonic vessel formation in zebrafish. (A) Aberrant splicing of Danio rerio HDAC6 mRNA after HDAC6 splice-blocking Mo injection by PCR. Injection of the HDAC6 SB-Mo generated at 24 h post fertilization a morphant signal of 338 bp, whereas the HDAC6 wt signal completely

disappeared (253 bp), show Mo. Whole-zebrafish embry h after Mo injection and su mRNA expression serves a HDAC6 protein expression zebrafish embryo lysate at HDAC6 translation-blocking Protein lysates were subject with HDAC6-specific antibo


injection

loading control. C-F phenotyping of HDAC6 morphants 48 h post fertilization. (C) Representative confocal fluorescence pictures of vessel in the anterior

Arrows quantific control I GFP us verviev gions DAC6 cate Vs def ISV. vess

Source Data (524 KB)

Download PowerPoint slide (448 KB)

SOURCE DATA

b&d-Column2C

k/t-Erk, 30 pM

0.339116171

0.555355249

1.632582883 1.488299981

0.428561181

0.458929493

) + ()

F. control or, Expt. 3

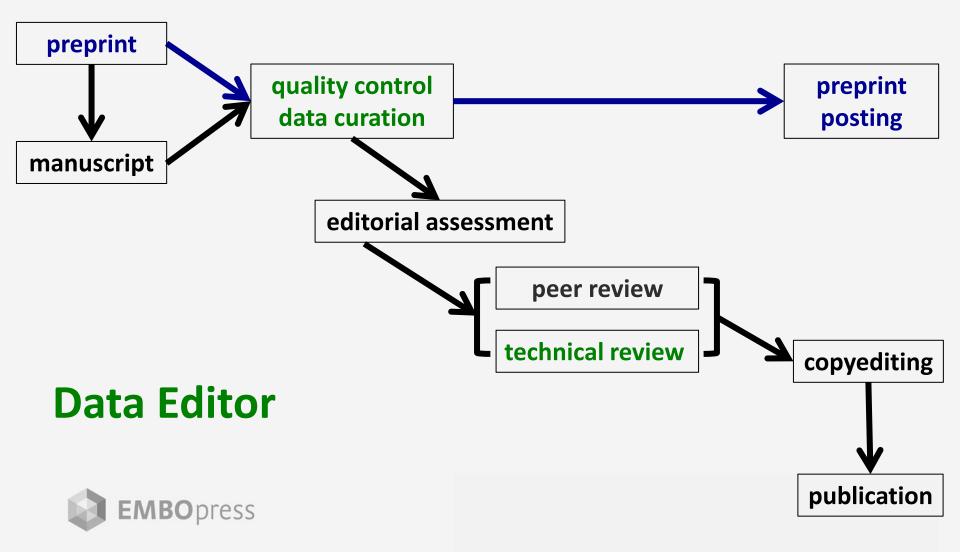
'I'm a great believer in seeing all the data – this is an important lever for transparency

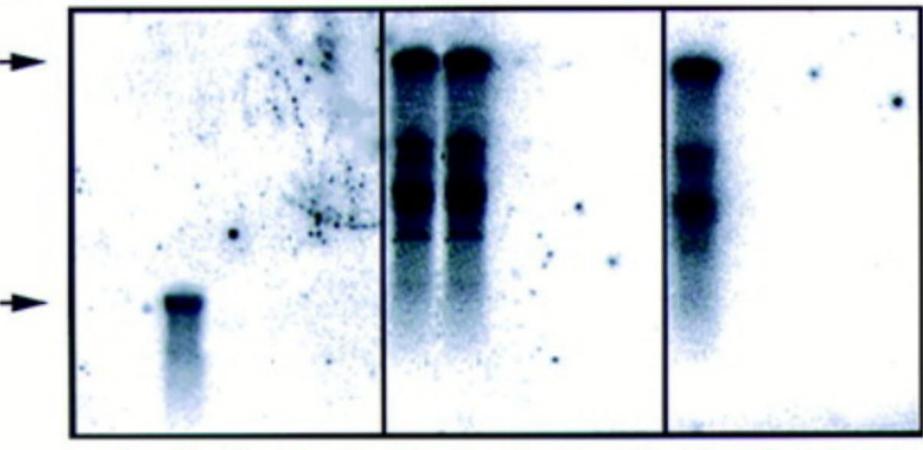
Michael Farthing, founder COPE

part of tg(fli1:EGFP)	zeb	rafish embryos after			
n of HDAC6 translatio	۲	00	Fig1b	&d_raw.txt	
indicate vessel defed	0	A	В	C	
	1	Fig1b&d-Column1	Fig1b&d-Column2A	Fig1b&d-Column2B	Fig1t
cation of vessel defe Mo-treated zebrafish	-	Time (min)	p-Erk/t-Erk, 30 pM PDGF, control vector, Expt. 1	p-Erk/t-Erk, 30 pM PDGF, control vector, Expt, 2	p-Erk PDGF vecto
ing anti-GFP antibod	3	0	0.194672394	0.201524091	10.5.003
w pictures and higher	4	5	0.395173883	0.389974466	
of the anterior part of	5	15	0.690917146	1.236910363	
TB-Mo-injected emb	6	30	0.394324884	0.72081196	
	1	60	0.38782972	0.38107614	
vessel defects. (E)	8	120	0.384442827	0.216360469	
and DLAVs for HDA	9				
nts. Statistical signifi	10				
pective Mo concentra	-		Fig1b&d_raw.tx	t 40	
	-	ady		N 2011	
tion of vessel defect					
nbers represent the r	ามๆ	animals and			
ge of animals with		one ISV or DLAV	r		
AV, dorsal lop		anastomotic vesse	l;		
egmental y	PA	V, parachordal	(D) BUB	LIC

Peer Review, Quality Control & Data Curation

_	What	Who
•	Editorial Preselection	Scientific Editors
•	Peer Review	Senior Investigators
•	Technical Review	Postdocs
•	Data Curation	Data Editors – Authoring tools
•	Quality Control	Data Editors – Semi-automation
•	Ethics (incl. referees)	Editors

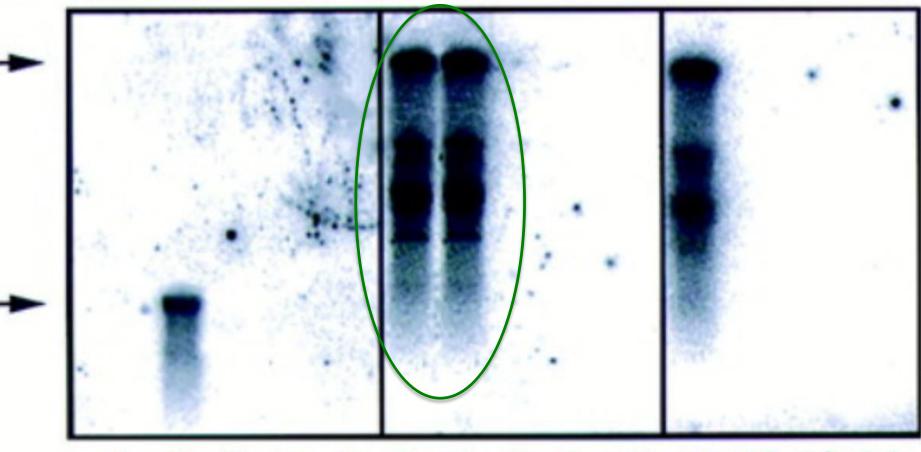



EMBO

molecu|ar systems biology

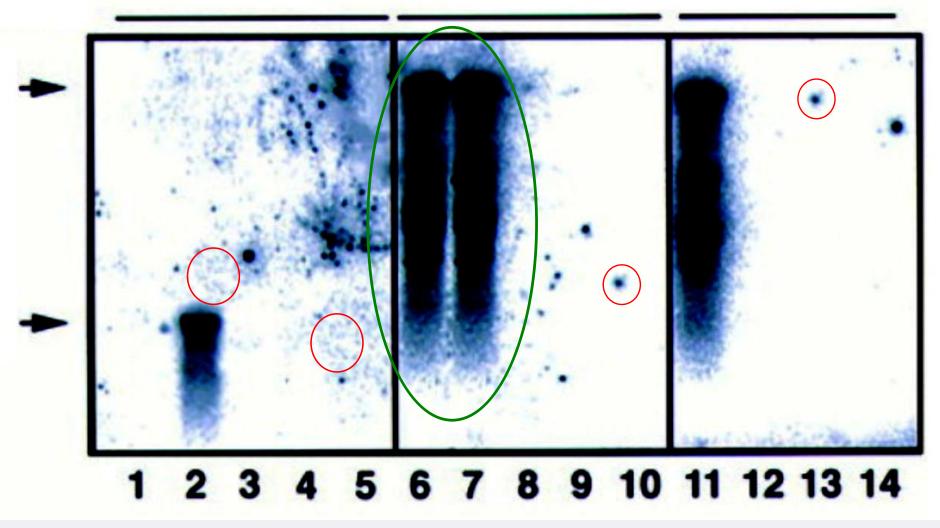
Prepublication Quality Control @ Journals: the final checkpoint

Beautification or Fraud?



1 2 3 4 5 6 7 8 9 10 11 12 13 14

Beautification or Fraud?



1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fraud with intent

Standardization

Intra-Journal

EMBO classification	Image Manipulation	Action	%
I	cosmetic & mistakes; source data & convincing author explanation	Revision No report	12
II	beautification & undeclared manipulation that changes conclusions; source data or new data	May allow revision May report	8
ш	Undeclared manipulation with obfuscation & intent; no explanation; no source data	Reject and Report	< 0.5%
Total			20.5

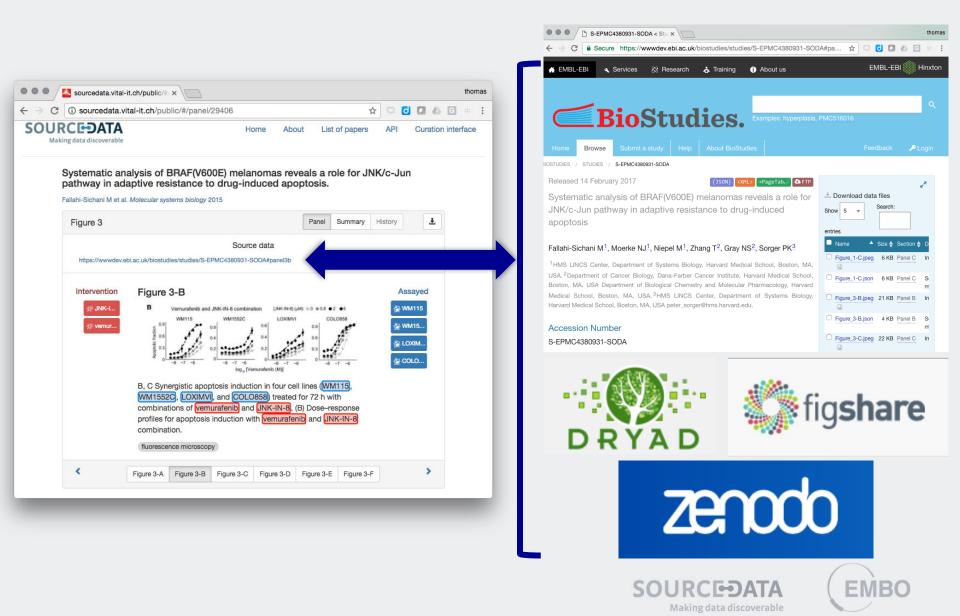
molecu|ar systems biology

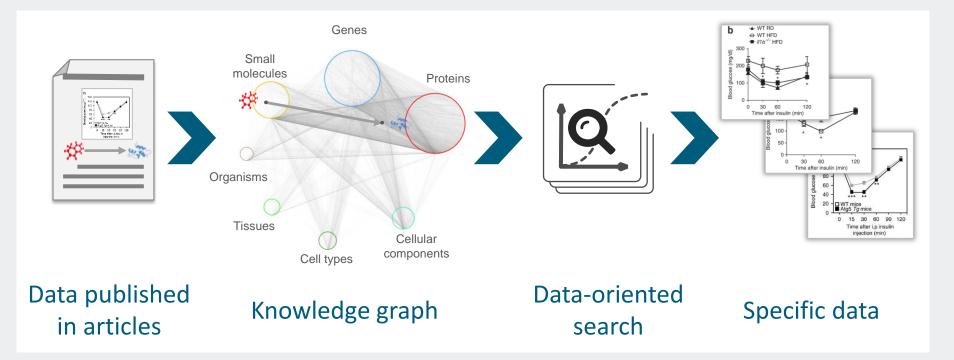
Standardization

- Intra-Journal
- Cross-Journal
- Journal & Research Institution

Responsibilities	Res. Institution	Funder	Journal
Quality Control	Yes	Yes	Yes
Reporting	Yes	Yes	Yes
Sanctions	Yes	Yes	No

EMBO CLUE workshop, 7-2016 http://biorxiv.org/content/early/2017/05/19/139170




molecu|ar systems biology

SourceData | Repositories

SOURCEDATA

sourcedata.embo.org: an open platform that makes papers discoverable based on the data shown in figures.

Connectivity to related findings = reliability

Enhanced Protocols

1585 Video Articles

B

R

B

B

B JoVE Biology

JoVE Biology welcomes all general biology research methodologies. Content in this section canvases all fields of cell, molecular, and organismal biology, ranging from new applications of standard techniques to novel approaches aimed at understanding the functions of life and living organisms. This diverse section includes, but is not limited to, techniques in physical biology, cellular biochemistry, genetics, physiology, systems biology and a combination of eukaryotic and prokaryotic model systems.

Imaging the Intracellular Trafficking of APP with Photoactivatable GFP

¹Department of Physiology and Pharmacology, Robarts Research Institute, **Western University**, ²Department of Clinical Neurological Sciences, **Western University**

A Screenable In Vivo Assay for Mitochondrial Modulators Using Transgenic Bioluminescent Caenorhabditis elegans

Cristina Lagido¹, Debbie McLaggan¹, L. Anne Glover¹

Joshua H. K. Tam¹, Stephen H. Pasternak^{1,2}

¹Institute of Medical Sciences, University of Aberdeen

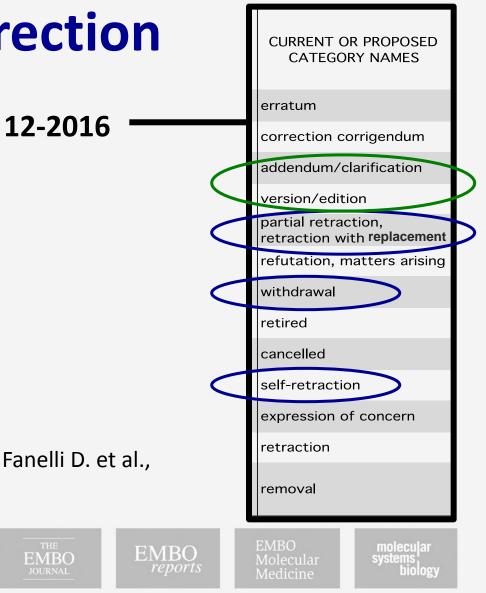
Use of Enzymatic Biosensors to Quantify Endogenous ATP or H₂O₂ in the Kidney

Oleg Palygin¹, Vladislav Levchenko¹, Louise C. Evans¹, Gregory Blass¹, Allen W. Cowley Jr.¹, Alexander Staruschenko¹

¹Department of Physiology, Medical College of Wisconsin

bio-protocol

Relating Stomatal Conductance to Leaf Functional Traits



Wenzel Kröber¹, Isa Plath¹, Heike Heklau¹, Helge Bruelheide^{1,2}

¹Institute of Biology / Geobotany and Botanical Garden, Martin-Luther-University Halle-Wittenberg, ²German Centre for Integrative Biodiversity Research

Beyond retractions: Self correction

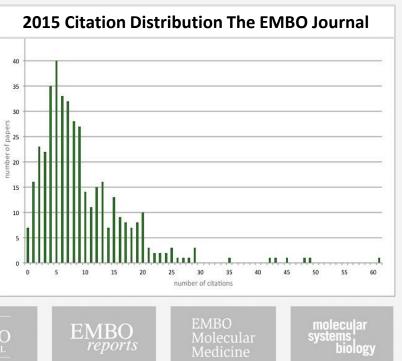
- Stanford METRICS workshop, 12-2016
- Versioning

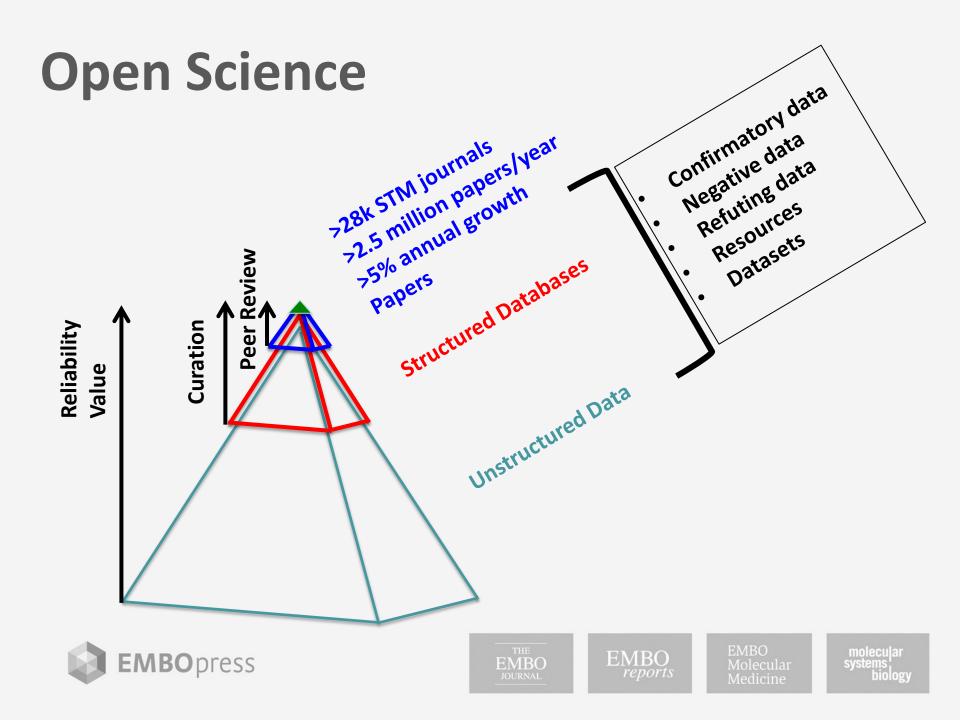
EMBO

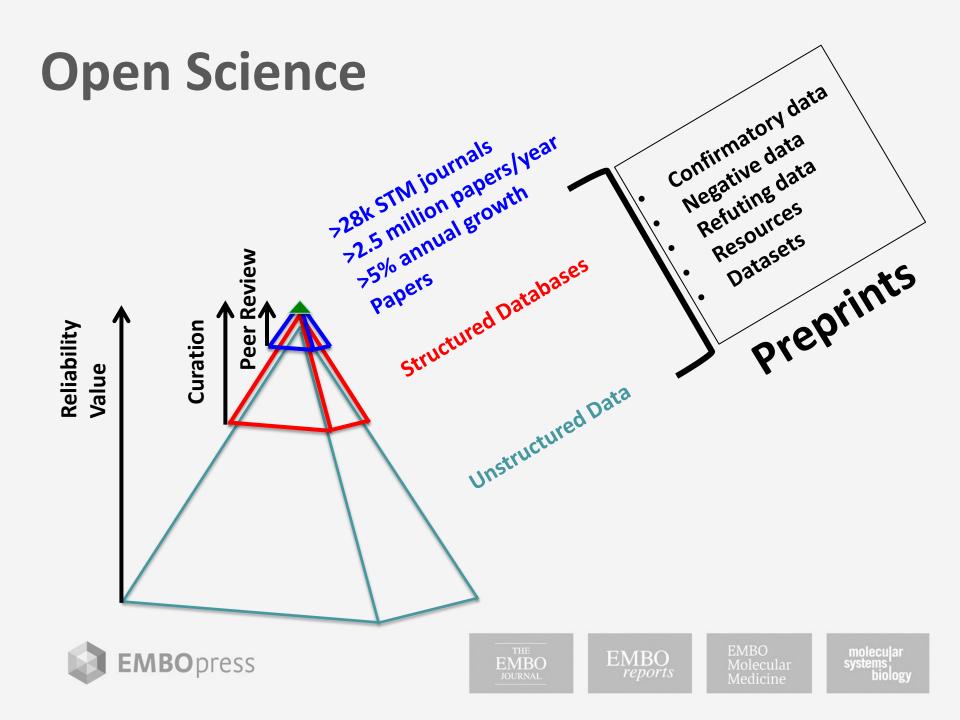
Research Assessment: Beyond high impact papers

- High quality, important data beyond JIF & journal name
- Other contributions: peer review, research support, training

Declaration on Research Assessment




EMBO reports EMBO Molecular Medicine molecu|ar systems biology


Depressurizing Publishing

- 'Wean off' Journal Impact Factor; use any metrics with care
- Manuscript transfers
- Preprints
- 'Scooping Protection' starting @ preprint posting

bioRxiv Submission

* Post a preprint to bioRxiv

Would you like us to post your paper as a preprint at bioRxiv?

🔘 Yes, please post a preprint of this submission to bioRxiv on my behalf

No, I do not want to post a preprint to bioRxiv at this time.

Preprint & Data citation

- Huang J, Brown AF, Lei M (2012). Crystal structure of the TRBD domain of TERT and the CR4/5 of TR. Protein Data Bank 4026 [DATASET] Datalink
- Smith et al (2017). This is interesting. BioRxiv doi:12345786/12773.00 [PREPRINT] CrossRef PubMed Google Scholar

Training (authors & referees)

EDITORIAL

nature cell biology

Appreciating data: warts, wrinkles and all

In the glitzy world of Hollywood and Bollywood, each year sees the development of more extravagant digital special effects. Many productions have long since broken the constraints imposed by physics and biology and although the superhuman feats of modern We hope these guidelines will aid the publication of more informative datasets. Importantly, we reemphasize that neither the referees nor the editors are the data-police (see also *Nature Cell Biology*, **8**, 101 (2006)). Senior investigators and corresponding authors are responsible for assuring that data submitted for publication represents the experimental results accurately and fairly. We suggest that they are also responsible for ensuring that their students are educated in appropriate scientific conduct.

2006; doi:10.1038/ncb0306-203a

EMBO

reports

EMBO Molecular Medicine

molecular systems biology

Journals are not Data Police

http://undsci.berkeley.edu/article/socialsideofscience_06

